
FLASHPASS: Proactive Congestion Control for
Shallow-buffered WAN

Gaoxiong Zeng1, Jianxin Qiu1, Yifei Yuan2, Hongqiang Liu2, Kai Chen1
1iSING Lab@Hong Kong University of Science and Technology 2Alibaba

Abstract—In recent years, large enterprises (e.g., Google,
Alibaba, etc.) have been building and deploying their wide-area
routers based on shallow-buffered switching chips. However, with
legacy reactive transport (e.g., TCP Cubic), shallow buffer can
easily get overwhelmed by large BDP wide-area traffic, leading
to high packet losses and degraded throughput. To address it, we
ask: can we design a transport to simultaneously achieve high
throughput and low loss for shallow-buffered WAN?

We answer this question affirmatively by employing proactive
congestion control (PCC). However, two issues exist for existing
PCC to work on WAN. Firstly, wide-area traffics have diverse
RTTs, leading to what we called imperfect scheduling issue (e.g.,
data crash in time). Secondly, there is one RTT delay for credits to
trigger data sending, which may degrade network performance.
Therefore, we propose a novel PCC design - FLASHPASS.
To address the first issue, FLASHPASS adopts sender-driven
emulation process with send time calibration to avoid the data
packet crash. To address the second issue, FLASHPASS enables
early data transmission in the starting phase, and incorporates an
over-provisioning with selective dropping mechanism for efficient
credit allocation in the finishing phase. Our evaluation with
production workload demonstrates that FLASHPASS reduces the
overall flow completion times of TCP Cubic and ExpressPass by
up to 32% and 11.4%, and the 99-th tail completion times of
small flows by up to 49.5% and 38%, respectively.

I. INTRODUCTION

With the prevalence of the geo-distributed web applications
and services, wide-area network (WAN) is becoming an in-
creasingly important cloud infrastructure [1]–[5]. For example,
Google [3] reveals that its inter-datacenter wide-area traffic has
been growing exponentially with a doubling of every 9 months
in recent 5 years. This pushes the WAN facility to evolve much
faster than the rest of its infrastructure components.

To scale the wide-area network cost-effectively and flexibly,
large enterprises such as Google and Alibaba have been build-
ing and deploying their customized wide-area routers based
on shallow-buffered commodity switching chips [1], [6]–[9]
(§II-A). However, conventional wisdom [10] dictates that
buffer size of one bandwidth-delay product (BDP) is required
to achieve full link utilization in the worst (synchronized) case.
Thus, the cheap shallow-buffered WAN gear imposes stringent
requirements on the underlying transport protocols.

We revisit the buffer sizing problem with the newly evolved
TCP-style reactive congestion control (RCC) [11]–[15] al-
gorithms, and find that shallow buffer can easily get over-
whelmed by the wide-area traffic (§II-B). Specifically, running
legacy reactive transport protocols over shallow-buffered WAN
may lead to either high packet losses or degraded throughput

Reactive Transport
(e.g., TCP Cubic, Copa, BBR)

Proactive Transport

Receiver-driven
(e.g., ExpressPass, NDP, Homa)

Switch-assisted
(e.g., NDP)

Sender-driven
(FlashPass)

Decentralized Centralized
(e.g., FastPass)

Transport Protocol

Fig. 1: Design space of transport protocols.

or both. To mitigate these problems, current practice seeks
help from global traffic engineering [1]–[3], end-host rate
limiting [4], or traffic scheduling with differentiated services.

Instead, we ask the question: can we design a transport
to simultaneously achieve low loss rate and high throughput
under shallow-buffered WAN? Inspired by the emerging proac-
tive congestion control (PCC) [18]–[23] design (Figure 1), we
answer this question affirmatively by taking the initiative to
extend the PCC idea for shallow-buffered WAN.

However, while PCC has been proven to work well in
datacenter network (DCN), we find several practicality issues
to make it work on WAN (§II-C). First of all, centralized
PCC [18] and switch-assisted PCC [19] protocols impose high
requirements on network facilities (e.g., cutting payload [24])
and hence are either unscalable or impractical. Besides, some
receiver-driven protocols like Homa [21] are based on the
assumption of single bottleneck between the top-of-rack (ToR)
switch and receiver, which does not hold on WAN.

While credit-emulated PCC like ExpressPass [20] seems to
work, we find it may suffer from efficiency issues on WAN.
Firstly, unlike homogeneous DCN, wide-area traffics have
much diverse RTTs. The well scheduled credits on the reverse
path may still trigger data packet crush on the data forward
path due to different turn-around times. Secondly, there is one
RTT delay for credits to trigger data sending for both starting
phase (to start data sending quicker) and finishing phase (to
stop credit generation in time) in PCC. Such an overhead is
prohibitive given much higher RTT on WAN.

Therefore, we propose a novel PCC solution - FLASHPASS
to address these challenges (§III). Firstly, to address the imper-
fect credit scheduling issue, FLASHPASS leverages a sender-
driven emulation process together with send time calibration.
Unlike receiver-driven protocols, sender-driven FLASHPASS
can exactly rehearse the future data sending in the same
direction on the emulation network. With the addition of the
timestamp information on the emulation and credit packets,978-1-6654-4131-5/21/$31.00 © 2021 IEEE

TABLE I: Buffer size for commodity switching chips.

Switching Chips BCM Trident+ BCM Trident2 BCM Trident3 BCM Trident4 BF Tofino BF Tofino2
Capacity (ports × BW) 48 × 10Gbps 32 × 40Gbps 32 × 100Gbps 32 × 400Gbps 64 × 100Gbps 32 × 400Gbps
Total Buffer 9MB 12MB 32MB 132MB 22MB 64MB
Buffer per port 192KB 384KB 1MB 4.125MB 344KB 2MB
Buffer per port per Gbps 19.2KB 9.6KB 10.2KB 10.56KB 3.44KB 5.12KB
aBCM is short for Broadcom. BF is short for Barefoot (acquired by Intel in 2019). They are two dominant switching chip manufacturers.

FLASHPASS can strictly schedule data sending in the time
space. Secondly, to mitigate the impact of one RTT delay for
credits to trigger data sending, FLASHPASS leverages Aeo-
lus [23] to enable early data transmission in the starting phase,
and further incorporates a credit over-provisioning mechanism
together with a selective dropping discipline for efficient credit
or bandwidth allocation in the flow finishing phase.

We measured the realistic workload on a production wide-
area network of Alibaba, and experimented FLASHPASS with
NS2 simulation to demonstrate its superior performance (§IV).
In static workload experiments, FLASHPASS achieves near
full throughput (9.14Gbps) with zero packet loss persistently
across various settings under the shallow-buffered WAN. The
throughput is up to 55.9% higher than that of TCP Cubic.
While comparing to ExpressPass, FLASHPASS achieves the
similar throughput with zero packet loss rate (up to 0.12%
losses for ExpressPass). In realistic dynamic workload exper-
iments, FLASHPASS (with Aeolus enhancement) reduces the
overall flow completion times of TCP Cubic and ExpressPass
(also with Aeolus enhancement) by up to 32% and 11.4%; and
the reduction of small flow 99-th tail completion times can get
up to 49.5% and 38%, respectively.

We also presented a practical deployment analysis (§V).
Specifically, multiple queues and ECN marking/dropping
should be configured across the WAN (e.g., to coexist with
legacy TCP traffic), and an efficient transport implementation
is required. However, building a fully functional prototype is
beyond the scope of this paper. Our hope is that the design,
analysis, and extensive simulations conducted in this paper will
pave the way for the next step of prototyping and deployment.

II. BACKGROUND AND MOTIVATION

A. Shallow-buffered Network

The last decade has witnessed an exponential growth of web
applications and services (e.g., web search, cloud computing,
social networking, etc.). This drives the large Internet com-
panies (e.g., Google [25], Microsoft [26], Facebook [27], and
Alibaba [28], etc.) to build the modern data centers (DCs)
at an unforeseen speed and scale across the globe. With the
ever-increasing communication demand, traditional network
infrastructure built with commercial switches [29] fall short
to meet the scale, management, and cost requirements.

To address it, inspired by the then-emerging merchant
switching silicon industry [6], large enterprises start to build
and deploy their own customized networking hardware both on
WAN [1], [8] and DCN [6], [7]. However, while the cutting-
edge merchant silicon provides the highest bandwidth density
in a cost effective way, the shallow buffer (Table I [9]) shipped
with it can degrade the network performance to a great extent.

For example, Google has reported its experience of high packet
losses on the shallow-buffered WAN [1] and DCN [7].

The buffer pressure is especially high for WAN communi-
cation. Conventional wisdom on buffer sizing problem [10]
dictates that one bandwidth-delay product (BDP) buffering is
required to achieve full link utilization in the worst case (i.e.,
with synchronized flows). However, the commodity switching
chips provide shallow buffer of less than 20KB per port per
Gbps according to Table I. That is even lower than 0.1% of
WAN BDP (25MB per Gbps assuming 200ms RTT). Thus,
it is extremely challenging to deliver low loss rate and high
throughput simultaneously on shallow-buffered WAN.

B. Reactive congestion control (RCC) is insufficient

We revisit the buffer sizing [10] problem, and see if the
state-of-art reactive congestion control (RCC) protocols [11]–
[15] perform well for shallow-buffered WAN. The theoretical
analysis is summarized in Table II:

• TCP NewReno [11] is the seminal loss-based congestion
control algorithm. It follows the additive-increase and
multiplicative-decrease (AIMD) control rule. The conven-
tional buffer sizing theory [10] indicates one BDP buffer
is required for full link utilization.

• TCP Cubic [12] is loss-based congestion control and
enabled by default in Linux system. It increases window
size based on a cubic function of time and decreases
multiplicatively by a fraction of β=0.2 by default on loss.
The resulting buffer requirement is BDP/4.

• TCP Vegas [13] reacts to both delay and loss signal. It
applies additive-increase and additive-decrease (AIAD)
control rule based on delay signal to control the lower
and upper bound of excessive packets in flight, and
also performs multiplicative decrease on loss signal. The
buffer requirement is 5×flow# packets.

• Copa [14] is based on delay signal. It adjusts sending
rate towards 1/(δdq) by AIAD control rule, where dq is
the measured queueing delay. With default δ = 0.5, the
buffer requirement is 5×flow# packets.

• BBR [15] is model-based congestion control. It tries to
drive the transport to the theoretical optimal point [30]
based on accurate bandwidth and RTT estimation. BBR
bounds the inflight packets to cwnd gain×BDP by de-
fault. However, accurate bandwidth estimation is difficult
to achieve, often leading to high buffering in practice.

Based on the analysis, we find that the reactive congestion
control protocols all require non-negligible buffering for high
throughput and low loss rate. Even worse, the buffer require-
ment is unscalable (in proportion to either network capacity or
flow number) as network evolves and traffic demand grows.

TABLE II: Reactive congestion control (RCC) protocols for WAN.

Protocol Signal Algorithm Buffer requirement for high throughput and low loss
TCP NewReno [11] Loss AIMD β / (1 - β) × BDP = BDP (β = 0.5)
TCP Cubic [12] Loss AIMD β / (1 - β) × BDP = BDP/4 (β = 0.2)
TCP Vegas [13] Delay & loss AIAD (MD on loss) (β + 1) × n = 5n pkts (n = flow#, α = 2 pkts, β = 4 pkts)
Copa [14] Delay only AIAD 2.5n / δ = 5n pkts (n = flow#, δ = 0.5 / pkt)
BBR [15] No direct signal Not incremental (cwnd gain - 1) × BDP in Probe BW phase (cwnd gain = 2)
aCopa and BBR are both insensitive to loss signal, i.e., they do not throttle their sending rates during fast loss recovery.

0%

5%

10%

15%

20%

25%

0

2

4

6

8

10

0.2 0.8 3.2 12.8 51.2 204.8

Lo
ss

 R
at

e

Th
ro

ug
hp

ut
 (G

bp
s)

Buffer size (MB)

newreno-tp cubic-tp vegas-tp copa-tp bbr-tp
newreno-loss cubic-loss vegas-loss copa-loss bbr-loss

BDP=50MB

Fig. 2: Performance of reactive transports under shallow buffer.
The solid lines indicate throughput (or tp) on the left y-axis,
and the dash lines indicate loss rate on the right y-axis.

Note that this problem is fundamental to RCC protocols,
because they can detect congestion only after the formation
of queues and require one RTT delay before taking reaction1

We run NS3 simulation to illustrate the performance degra-
dation of reactive protocols under shallow buffer. We generate
200 parallel flows from different senders to single receiver
sharing the same 10Gbps bottleneck link with 40ms RTT (thus
BDP=50MB) for 5 seconds. We experiment buffer size of
0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, and 200 MB. Commodity
switching chips should have shallow buffer of no more than
0.2MB per port in 10Gbps network (according to Table I).
We enable selective acknowledgement (SACK) for efficient
loss detection and retransmission.

Experimental results are shown in Figure 2. We find that
the total throughput drops by 18%-37% as buffer decreases
to the shallow size (i.e., 200KB under 10Gbps). The loss rate
also increases dramatically for some protocols (e.g., 8.4% for
Copa and 5.1% for BBR). We observe significant losses at the
end of slow start (time at ∼0.5 second). This is because in
the slow start phase, window sizes are doubling every RTT,
resulting in packet losses of roughly half a window size at the
end. Therefore, we conclude that with RCC protocols, shallow
buffer can easily get overwhelmed by large BDP wide-area
traffic, leading to high packet losses and degraded throughput.

C. Proactive congestion control (PCC) as a solution

Inspired by the emerging proactive congestion control
(PCC) [18]–[23] design (Figure 1), we now explore the
possibility of employing PCC protocols for shallow-buffered
WAN. Unlike RCC that uses a “try and backoff” approach,
PCC operates in a “request and allocation” style. The key

1We do not consider RCC protocols using advanced switch features such
as in-band network telemetry (INT) that are often unavailable on WAN (§VI).

T + 0.5rtt credit

Sender Receiver

T + rtt data

Time T credit request

datacreditcredit request

2

1

3

Fig. 3: Receiver-driven proactive congestion control (PCC).

conceptual idea is to explicitly allocate the bandwidth of
bottleneck link(s) among active fows and proactively prevent
congestion. As a result, ultra-low buffer occupancy and (near)
zero packet loss can be achieved. Furthermore, PCC reaches
peak rate in roughly one RTT, avoiding the long convergence
time and high losses of RCC slow start.

However, as most of existing PCC protocols are designed
for DCN, many of them cannot work practically on WAN.
Centralized PCC [18] and switch-assisted PCC [19] protocols
impose high requirements on network facilities (e.g., cutting
payload [24]) and hence are either unscalable or impractical.
Some receiver-driven protocols like Homa [21] adopt simple
credit scheduling on the receiver side, assuming that there is
single bottleneck link between the top-of-rack (ToR) switch
and receiver. However, this assumption does not hold on WAN.

There are other receiver-driven protocols like Express-
Pass [20] that leverage sophisticated credit emulation pro-
cess on a separate queue for credit allocation. Unlike sim-
ple scheduling, emulation-based approach works for core-
congested network (more practical in WAN). Figure 3 shows
an overview of receiver-driven credit-emulated PCC protocols.
Specifically, they generate credit packets on the reverse rate-
limited path to emulate data sending. Each minimum-sized
credit packet (e.g., 84B) passing through the network triggers
the sender to transmit a MTU-sized data packet (e.g., 1538B).
Thus, the credit queue is rate-limited to 84/(84+1538) ≈
5% of the link capacity, and the remaining 95% is used for
transmitting data packets. This makes them possible to work
on WAN without assuming non-congested network core.

Therefore, we select ExpressPass [20] as our baseline PCC
design for WAN. We validate its superior performance over
RCC protocols following the same static workload experiment
in §II-B with the open-sourced NS2 simulation code [31]. The
results show that, ExpressPass achieves 9.5Gbps throughput
and zero packet loss when running static workload with same
RTTs on WAN (see more results in Figure 10).

However, we find that existing PCC protocols suffer from
several efficiency issues that are particularly serious on WAN
with different RTTs, especially under dynamic workload.

H1 … H2 H3

F1

Wide-area Network (WAN)

F2

Flow 1:
Start time=0ms
RTT=40ms
Size=20ms×linerate
Flow 2:
Start time=30ms
RTT=20ms
Size=20ms×linerate

Fig. 4: Competing flows have different RTTs on WAN.

TABLE III: Data crush of receiver-driven PCC (Figure 4).

Start time Credit send Data send Data arrive
Flow 1 0ms 20-40ms 40-60ms ∼60-80ms
Flow 2 30ms 40-60ms 50-70ms ∼60-80ms
aSimultaneous data arrival leads to high buffering or packet loss.

Problem 1: Unlike homogeneous DCN, wide-area traffics
have much diverse RTTs (not as simple as cases in §II-B).
The well scheduled credit on the reverse path may still trigger
data packet crush or bandwidth under-utilization on the data
forward path due to different turn-around times of flows.

We illustrate the problem with a case shown in Figure 4.
There are two flows from host H1 and host H2 to host H3,
competing on the same bottleneck link that connects down to
H3. The RTTs are 40ms and 20ms, respectively. Both have
a traffic demand size of 20ms×linerate. Table IV shows the
running process of receiver-driven PCC protocols. Flow 1 from
H1 starts at 0ms, i.e., the credit request send time. After
half a RTT, i.e., at time 20ms, the credit request reaches
the receiver side H3 and triggers the credit generation. The
credit generation lasts for 20ms and stops at 40ms, which is
based on the traffic demand size. Flow 2 from H2 starts at
30ms and triggers credit generation from H3 during time 40-
60ms. Thus, the credit generation of Flow 1 and Flow 2 are
well interleaved. All credits then pass through the network
successfully. They trigger out the real data sending, and the
data arrival time are approximately 1 RTT after the credit send
time. Ideally (implicitly assuming the same RTT for different
flows in DCN), we expect the data packets to get through the
network without crush with each other. However, in this case,
giving different RTTs for Flow 1 and Flow 2 on WAN, we find
the data arrival times of two flows are the same, i.e., 60-80ms.
This leads to severe congestion, causing to large queueing and
packet losses in the shallow-buffered WAN.

In theory, maximum queueing Qmax can be calculated as:

Qmax = ∆RTT × linerate (1)

where ∆RTT is the maximum RTT difference among flows.
We run simulation under the Figure 4 scenario with 10Gbps

links. We set a very large buffer size in the bottleneck link
down to the host H3. We set initial credit rate to maximum
and terminate credit generation as soon as the flow demand
is reached. Results show that the maximum queueing reaches
8532 1.5KB-MTU-sized packets or 12.5MB, which exactly
matches our theoretical analysis (i.e., Equation 1). This will
lead to severe packet losses on the shalow-buffered WAN.
While in another simulation, we change the RTT of Flow 2 to
be 40ms (the same RTT as Flow 1) and vary the start time to
be 0ms, 10ms, 20ms or 30ms; and repeat the same experiment.

10 20 40 80
Flow Size (MB)

0

10

20

30

C
re

di
t W

as
ta

ge
 (%

)

Fig. 5: Credit wastage of ExpressPass.

We find that the maximum queueing length drops dramatically
to no more than 6 packets. This explains why ExpressPass does
not work well on WAN with large RTT difference, even if it
may work for homogeneous network such as DCN.

Problem 2: There is one RTT delay for credits to trigger
data sending. This impacts both starting phase (to start data
sending quicker) and finishing phase (to stop credit generation
in time) of a flow in PCC. Such an overhead is prohibitive
given large RTT on WAN. While we find that recent work
(e.g., Aeolus [23]) has addressed the problem of starting
phase and can be extended on WAN similarly, the problem
of finishing phase remains unsolved.

For the flow finishing phase, the delayed data sending may
either lead to low network utilization with default aggressive
credit generation, or possibly increase the flow completion
time by early termination of credit generation. As mentioned
earlier, to work for the core-congested WAN, existing PCC
protocols should leverage receiver-driven credit emulation.
Then, receiver cannot determine the exact amount of credit
successfully granted to each flow. This is problematic as it
means that the receiver also cannot determine the exact time
to stop credit generation. The receiver has two choices. On
one hand, if it keeps sending credits until getting the last data
packets, then there will be roughly one RTT wastage of credits,
leading to network under-utilization. On the other hand, if it
stops credit generation immediately when in-flight credits are
enough to cover the flow traffic demand, the flow may need
to request for more credits when some credits are dropped in
the emulation process, leading to higher network latency.

Figure 5 shows our experimental result of running realistic
workload on a network with an average flow RTT of 60ms and
bottleneck link of 1Gbps (same setup as §IV-C2). We generate
synthetic workload [32]. Flow sizes are varied from 10MB
to 80MB (based on our WAN measurement in §IV-A). The
average network load is set to 0.8 of the full network capacity.
We find that the credit wastage2 of ExpressPass can get up to
23.5% of the total successfully received credits. Notice that
the ExpressPass paper [20] shows even higher credit wastage
up to 60% in a workload with many small flows.

III. FLASHPASS DESIGN

A. Design overview

In this work, we aim to design a practical and efficient
transport protocol to simultaneously achieve high throughput
and low loss rate for shallow-buffered WAN (§II-A). Our
investigation over reactive transport shows its inherent insuf-
ficiency, requiring non-negligible buffering (§II-B). We then

2The credit wastage is measured by the received but not used credits.

turn to the emerging proactive transport. While revealing the
promising potential of the receiver-driven PCC protocols, we
also find two key technical challenges (§II-C):

1) How to schedule credits effectively without triggering
data crush even if network traffic has diverse RTTs?

2) How to generate credits sufficiently while not wasting
credits even if the granted amount is unpredictable?

The first challenge is fundamental to the receiver-driven
protocols. This is because receiver-driven protocols uses the
credit sending on the reverse path to emulate forward path data
sending. The network delay between receiver and bottleneck
link is different from that between sender and bottleneck.
Thus, interleaved credits passing through the reverse path can-
not guarantee well interleaved incoming data at the bottleneck.
To address it, we propose to adopt a sender-driven emulation
mechanism. This ensures that the emulation follows the same
direction as the real data sending. Besides, strict timing 3

should be enforced to the data sending. This ensures that the
delay for emulation/credit packet to trigger data packet out
keeps constant, instead of dependent on the different RTTs.

To address the second challenge, we should keep generating
credits even if the expected incoming credits are enough to
cover the flow traffic demand (we call it over-provisioning).
This is to ensure that flows can finish quickly with sufficient
credits, even if the amount of credits successfully passing
through the emulation network and granted to the sender is
unknown. However, we should also make sure these over-
provisioned credits waste no bandwidth, i.e., they should only
occupy the leftover bandwidth by the ordinary traffic. To this
end, we incorporate a selective dropping mechanism to grant
the over-provisioned credits in a “best-effort” manner.

Therefore, we propose a novel PCC solution - FLASHPASS
to simultaneously deliver high throughput and low loss rate
for shallow-buffered WAN. FLASHPASS is the first sender-
driven PCC protocol. It leverages a sender-driven emulation
process together with send time calibration to effectively
allocate credits for bandwidth and eliminate the data packet
crush in time (§III-B). It enables early data transmission in the
flow starting phase, and incorporates credit over-provisioning
together with a selective dropping mechanism to efficiently
utilize network bandwidth in the flow finishing phase (§III-C).

B. Sender-driven emulation mechanism

FLASHPASS leverages a sender-driven emulation mecha-
nism (Figure 6) to allocate network bandwidth without data
packet crush. The emulation process requires to separate the
network into two parts: an emulation network running on the
emulation queue, and a real data communication network on
the data communication queue. Emulation packet is set to
the minimum size, i.e., 84B Ethernet frame, including the
preamble and inter-packet gap. Each emulation packet passing
through the network triggers a credit return from receiver and
then a sender data transmission up to a maximum size Ethernet
frame (e.g., 1538B). Thus, in Ethernet, the emulation network

3Existing PCCs have no strict timing on data sending in the received credits.

T + 0.5rtt credit

Sender Receiver

T + Twait data

Time T emulation packet

datacreditemulation pkt

2

1

3

Fig. 6: Sender-driven emulation mechanism.
TABLE IV: Interleaved data arrival of FLASHPASS (Figure 4).

Start time Credit send Data send Data arrive
Flow 1 0ms 20-40ms 40-60ms ∼60-80ms
Flow 2 30ms 40-60ms 70-90ms ∼80-100ms
aInterleaved data arrival avoids high buffering and packet loss.

is rate-limited to 84/(84+1538) ≈ 5% of the link capacity, and
the remaining 95% is used for the data communication. Unlike
existing PCCs that send data packets as soon as credits arrive,
FLASHPASS encodes timestamps (T) in its emulation packets
and credit packets, and grants data sending at exact time of
T + Twait to eliminate data crush at the bottleneck link. This
send time calibration mechanism effectively helps in avoiding
data packet crush in time as shown below.

Figure 6 shows the running process of the sender-driven
emulation mechanism. 1© At time T , a new flow arrives and
immediately generates emulation packet at full rate of the
emulation network. The emulation packet will compete on
the emulation network and get dropped if queues form. The
emulation network is configured with a low buffer of several
packets. 2© At around time T+0.5rtt, emulation packet passes
through the network and triggers the credit feedback4 from
the receiver side. And around half a RTT later, the sender
receives and records the credit packet. 3© At time T + Twait,
the sender injects the data packet correspondingly into the data
communication network. Note that Twait should be larger than
the maximum RTT of the network5. In this way, emulation net-
work exactly mimics the bandwidth competition of the future
data communication network. If network is over-utilized, only
emulation packets get dropped on the emulation network and
data communication network remains zero buffering.

To further illustrate the effectiveness of sender-driven em-
ulation mechanism, we compare the result of FLASHPASS
(Table IV) with that of the receiver-driven PCC (Table III) - the
running process both in the case of Figure 4. In FLASHPASS,
the Twait is set to the maximum RTT of the network, i.e.,
40ms. We find that the Flow 2 adjusts its data send time
to 70-90ms, and thus lead to ∼80-100ms data arrival time
at the receiver side. This effectively avoids the data crush
with Flow 1 during time 60-80ms as with the receiver-driven
solution. We should also notice that receiver-driven solution
cannot resolve the data crush problem in general by simply
adding a constant waiting time Twait, even if it seems to work
in this case (bottleneck at the ToR-to-receiver link). This is

4Credit packets are seldomly lost (not in our simulation with perfect timing).
And we can put it on a high priority queue to avoid the unexpected losses.

5Given a private WAN with shallow buffering, the maximum RTT of the
network can be obtained based on simple measurement of the baseline RTT.

Algorithm 1: Emulation Feedback Control at Sender.
Input : New Incoming Credit Packet
Output : Emulation Packet Sending Rate cur rate
Initialize: cur rate← max emulation rate
/* Update the emulation loss rate */

1 loss rate = 1−# credit in/# emulation out ;
2 /* Update sending rate every RTT */
3 if loss rate > max target loss then
4 cur rate = cur rate×

(1− loss rate)× (1 +min target loss) ;

5 else if loss rate < min target loss then
6 cur rate = cur rate× (1 +max target loss) ;

because in practice, bottleneck link may reside in any hop of
the network, and the time or distance to reach the bottleneck is
different and unknown for both senders and receivers. Thus, it
is fundamentally difficult to avoid data crush without faithfully
mimic the data sending from a sender-driven approach.

Emulation feedback control: FLASHPASS uses an emulation
feedback control to regulate the sending rate of emulation
packets. This is to ensure high bandwidth utilization and
fairness, which is similar to ExpressPass6. For example, in
the parking lot scenario, naively sending out emulation packets
at linerate will lead to link under-utilization. To address it, a
feedback control is required for the emulation process.

Unlike data forwarding, the emulation feedback control
has low cost in its emulation packet losses and thus can
be aggressive in probing for more bandwidth. Observing this
characteristic, FLASHPASS adopts a simple yet effective loss-
based feedback control as shown in Algorithm 1. The emula-
tion packet loss rate is controlled between min target loss
and max target loss (by default 1% and 10%, respectively).
The rate adjustment follows a multiplicative-increase and
multiplicative-decrease (MIMD) control rule. With the record
of current loss rate and the target loss range, the increase and
decrease adjustment can be calculated precisely. In this way,
FLASHPASS emulation process can achieve fast convergence
to full link utilization. Notice that FLASHPASS emulation
process allows fast start for new flows while still guaranteeing
low credit waste with the selective dropping mechanism. We
also show that the feedback control algorithm here helps in
calculating the expected credits inflight (see Equation 2 and
more details in §III-C).

Sender-driven vs receiver-driven? There are both pros and
cons for sender-driven approach. On one hand, sender-driven
approach can emulate the data forwarding with precisely
interleaved arrival time at the bottleneck link, and thus can
practically achieve near zero buffering. This is the most desir-
able feature in our targeting shallow-buffered WAN scenario,
and explains why we choose the sender-driven approach in our
design. Besides, it does not need to ensure path symmetry like
the receiver-driven protocols, where data packet must exactly
follow the reverse path of the credit emulation.

6More detailed illustration can be found in Figure 4 of ExpressPass [20]

2 2

11

2 2

Packet tagging at end-host

Ordinary emulation packets Over-provisioned emulation packets

Selective Dropping Threshold

Network Fabric

1

2
Emulation Queue

Selective dropping in the network

1

Egress

Fig. 7: Over-provisioning with selective dropping mechanism.

On the other hand, sender-driven approach introduces half a
RTT longer delay between emulation and data sending. Such
a longer delay can have negative impact without careful con-
sideration. In FLASHPASS, we have well handle this problem
for both the starting phase and finishing phase. Besides, it also
adds one-way more control packets. To reduce this overhead,
FLASHPASS adopts delayed credit sending. Specifically, it
waits for more credits of the same flow and feeds them back in
single packet if timestamp info indicates a long waiting time
for data sending. The delayed feedback credit packets should
include timestamps of all corresponding emulation packets.

C. Over-provisioning with selective dropping mechanism

To handle the credit delay problem in the flow starting
phase, FLASHPASS adopts similar idea as in Aeolus [23].
Specifically, new flows start at line rate in the first RTT before
receiving any credit (i.e., pre-credit phase). The first RTT
packets are marked as “unscheduled”. The unscheduled data
packets in the pre-credit phase can then get selectively dropped
if meeting the (non-first-RTT) scheduled packets in the net-
work (similar to the selective dropping mechanism described
below). In case of first-RTT packet losses, a tail loss probing
is employed together with credit-scheduled retransmission.

To handle the credit wastage problem in the flow finish-
ing phase (unsolved by Aeolus), FLASHPASS incorporates a
credit over-provisioning mechanism with selective dropping
discipline (a major contribution in this paper). Specifically,
FLASHPASS keeps generating emulation packets and trigger-
ing out credit packets even if the expected incoming credits
are enough to cover the flow traffic demand (we call it over-
provisioning). While during the packet emulation process, the
over-provisioned emulation packets are selectively dropped if
conflicting with the ordinary emulation packets in the network.
This ensures that the over-provisioned credits only occupy the
leftover bandwidth not used by the ordinary traffic demand.

However, it is also challenging to determine the right time to
switch emulation packets from ordinary to over-provisioned.
To this end, we need to maintain an estimation of the incoming
credits. If the estimate cannot cover the remaining traffic
demand, emulation packets are set to be ordinary. Otherwise,
emulation packets are over-provisioned.

Figure 7 illustrates the detailed credit over-provisioning and
selective dropping mechanism of FLASHPASS.

Packet tagging at the end-host. The end-host maintains a
per-flow estimation of the incoming credit packets (Cexpected).

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

CD
F

Flow Size (MB)

DCN-Microsoft
WAN-Alibaba

Fig. 8: Flow size distribution.
TABLE V: Traffic characteristic of a production WAN.

Small Flow Large Flow Average
Flow Size (MB) 0-10 >10 65
Flow Percentage 15.8% 84.2% -

Specifically, the sender end-host records the in-flight emulation
packets (Eout). With the regulation of the emulation feedback
control loop, the actual emulation packet loss rate is expected
to be lower than max target loss most of the time. Thus,
the expected credits can be calculated following Equation (2):

Cexpected >= Eout × (1−max target loss) (2)

When the expected credit amount Cexpected exceeds the re-
maining traffic demand7 of the flow, the sender end-host starts
marking the emulation packets as over-provisioned, i.e., with
high dropping priority label. Otherwise, emulation packets are
marked as ordinary, i.e., with low dropping priority label.

Selective dropping on the network fabric. Based on the
dropping priority label in the emulation packets, network
switches selectively drop the high dropping priority packets
before low priority ones when network bandwidth is not
enough. Commodity switching chips cannot push out packets
that are already stored in the switch buffers. Thus, we can only
selectively drop packets at the ingress queue. To this end, we
adopt a feature of RED/ECN function, which is widely sup-
ported by commodity switches [33], [34]. Specifically, when
the switch queue length exceeds the ECN marking threshold,
the switch will mark the arrival ECN-capable packets and
drop the non-ECN-capable packets. Therefore, FLASHPASS
can repurpose this function to achieve selective dropping.
Senders can simply set ordinary emulation packets as ECN-
capable and over-provisioned emulation packets as non-ECN-
capable, to enable selective dropping of the over-provisioned
packets with high priority on the network fabric.

IV. EVALUATION

In this section, we present the detailed FLASHPASS eval-
uation setup in §IV-A, and conduct extensive experiments to
answer the following questions:

• Can FLASHPASS achieve high throughput and low loss
rate under static workload? In static workload experi-
ments (§IV-B1), FLASHPASS achieves near full through-
put (9.14Gbps) with zero packet loss persistently across
various settings under the shallow-buffered WAN. The
throughput is up to 55.9% higher than that of TCP Cubic.

• Can FLASHPASS reduce flow completion time (FCT)
under realistic dynamic workload? In realistic dynamic

7We assume traffic demand information is available. If not, we simply use
the send buffer occupancy to calculate the remaining traffic demand [56].

Sender 1

Receiver

Sender 2

Sender N

…

10ms

delay1

delay2

delayN

Fig. 9: Dumbbell network topology.

workload experiments (§IV-B2), FLASHPASS with Ae-
olus enhancement achieves 28.5%-32% and 3.4%-11.4%
smaller overall flow completion times compared to Cubic,
and Aeolus-enhanced ExpressPass, respectively.

• How do different parameters and components of FLASH-
PASS impact its network performance? We show the
impact of parameter settings of FLASHPASS in §IV-C1,
and validate the effectiveness of the over-provisioning
with selective dropping mechanism in §IV-C2.

A. Evaluation Setup

Schemes Compared: We mainly compare the performance
of FLASHPASS with TCP Cubic [12] and ExpressPass [20].
TCP Cubic is a loss-based reactive congestion control (RCC)
protocol that is enabled by default in Linux. It is serving
for the majority of the real-world wide-area traffic nowadays.
ExpressPass is one of the seminal proactive congestion control
(PCC) protocols. Based on our knowledge, it is the only exist-
ing PCC that can practically work on WAN. We use the default
parameter settings in ExpressPass. We have evaluated both
FLASHPASS and ExpressPass with and without Aeolus [23].
Aeolus is a building block for PCC solutions that improves
their performance in the pre-credit phase (i.e., first RTT).

Experiment Configuration: We build and run our NS2
simulation based on the open-sourced code from Express-
Pass [31]. In the static workload experiments (§IV-B1), we
mainly use a dumbbell network topology as shown in Figure 9.
In the dynamic workload experiments (§IV-B2), we mainly
use a regional wide-area network as shown in Figure 13.
By default, the switch data packet buffer is set to 20KB per
port per Gbps according to the Table I. The emulation/credit
network queue buffer is set to 8 packets for both FLASHPASS
and ExpressPass. The selective dropping threshold is set to 2
packets for both Aeolus and over-provisioning mechanism of
FLASHPASS. The retransmission timeout is set to 200ms. The
packet MTU is set to 1.5KB.

Realistic Workload: We measured the flow size from a
regional wide-area network of Alibaba. The data are collected
on links between two data centers. The traffic running on those
links are mainly from a data storage service. The flow size
distribution is shown in Figure 8 and summarized in Table V.
Compared with the datacenter workload [35]–[37], wide-area
workload has much larger flow size (∼65MB) on average.
Based on our classification, there are more than 84.2% flows
that are large-sized with more than 10MB traffic volume. The
largest flows on WAN can get up to GBs (not shown in the
figure), which again are much larger than those on DCN. In our
realistic workload experiments, workloads are generated based
on traffic patterns measured from the production WAN. Flows

Cubic ExpressPass FlashPass
0

2

4

6

8

10

T
hr

ou
gh

pu
t (

G
bp

s)

0.0

0.5

1.0

1.5

2.0

L
os

s R
at

e
(%

)

(a) delayi = Uniform(0, 20ms),
i = 1, 2, ..., N ;N = 20.

Cubic ExpressPass FlashPass
0

2

4

6

8

10

T
hr

ou
gh

pu
t (

G
bp

s)

0.0

0.5

1.0

1.5

2.0

L
os

s R
at

e
(%

)

(b) delayi = Uniform(0, 20ms),
i = 1, 2, ..., N ;N = 200.

Cubic ExpressPass FlashPass
0

2

4

6

8

10

T
hr

ou
gh

pu
t (

G
bp

s)

0.0

0.5

1.0

1.5

2.0

L
os

s R
at

e
(%

)

(c) delayi = 10ms, i = 1, 2, ..., N ;
N = 20.

Fig. 10: Static workload experiment results running on a dumbbell network topology shown in Figure 9. The blue bar indicates
the throughput (Gbps) performance on the left y-axis. The red line indicates the packet loss rate (%) on the right y-axis.

arrive by the Poisson process. The source and destination is
chosen uniformly random from different DCs.

Performance Metrics: In the static workload experiments
(§IV-B1), we mainly measure the throughput or network uti-
lization, packet loss rate, and buffer occupancy. In the dynamic
workload experiments (§IV-B2), we use flow completion time
(FCT) as the major performance metric, which can directly
reflect the data transfer speed of network applications.

B. Evaluation Results

1) Static Workload Experiments: In this part, we evaluate
the performance of FLASHPASS under static workload exper-
iments. We mainly use the dumbbell network topology as
shown in Figure 9. All links have 10Gbps capacity. There
are N senders that simultaneously transfer data to the same
receiver. The network delay from sender to the bottleneck
switch is set to a uniformly random value between 0 and 20ms.
We also test a case with identical delay of 10ms (i.e., 40ms
RTT). The sender number is set to 20 or 200. Flows start
randomly in the initial 0.2 second and run for 5 seconds.

Figure 10 shows the experimental results. Specifically, Fig-
ure 10a shows the results under 20 long flows with different
RTTs. The throughput is 6.4Gbps, 9.2Gbps, 9.1Gbps for TCP
Cubic, ExpressPass, and FLASHPASS. And the packet loss
rate is 1.7%, 0.12%, and 0 for TCP Cubic, ExpressPass, and
FLASHPASS, respectively. In general, FLASHPASS achieves
the best performance compared to Cubic and ExpressPass. It
is able to maintain near full throughput with zero packet loss
throughout all experiments.

As a reactive protocol, TCP Cubic achieves the lowest
throughput and worst loss rate throughout the experiments.
Compared to FLASHPASS, the throughput can get up to 35.9%
lower in the worst case (Figure 10c). This is because the “try
and backoff” nature of RCC leads to inherently high data
packet losses, and as well periodical under-utilization after
rate “backoff”. Besides, Cubic uses slow start to ramp up its
sending rate at the initial phase, which can lead to high losses
at the end of the slow start (significant losses are observed
during time at ∼0.5 second in our experiments).

While ExpressPass achieves similar throughput with
FLASHPASS, it has observable packet losses in the scenario
with different RTTs (i.e., Figure 10a and 10b). While the
packet losses only slightly reduce the throughput of large
data transfer in this case, it has much larger negative impact

on small flows as we will see in the dynamic workload
experiments. FLASHPASS can effectively resolve the imperfect
scheduling issue with its sender-driven emulation process.
Notice that FLASHPASS has a slightly lower throughput due
to the emulation packet overhead. In the static experiments,
there is one-way traffic only, which hides the reverse path
credit overhead of ExpressPass.

When comparing the case of 20 flows (Figure 10a) with
that of 200 flows (Figure 10b), the throughput is better while
the packet loss is worse for both Cubic and ExpressPass with
smaller concurrent flows. This is because more flows can lead
to better statistical multiplexing [10] and thus more stable
throughput performance in general. When comparing the case
of different RTTs (Figure 10a) with that of identical RTTs
(Figure 10c), we find that the packet losses of ExpressPass
are indeed caused by the different RTTs on WAN. Identical
RTTs also leads to lower throughput for Cubic because it
increases the probability of synchronized “sawtooth” (i.e.,
larger variation in congestion window or sending rate).

2) Dynamic Workload Experiments: In this part, we eval-
uate the performance of FLASHPASS under realistic dynamic
workload experiments. We mainly use the wide-area network
(WAN) topology as shown in Figure 13. There are three
datacenters (DCs) in the wide-area region, connecting with
each other by WAN links of 20ms, 30ms, and 40ms one-way
delay, respectively. All wide-area links have 10Gbps capacity.
There are 20 hosts in each DC connecting directly to the wide-
area border router each with a 1Gbps link. The DC link delay
is set to 10 microseconds, which is negligible compared to that
of WAN. The workloads are generated based on traffic patterns
measured from the production WAN (Figure 8). Flows arrive
by the Poisson process. The source and destination is chosen
uniformly random from different DCs. Therefore, the WAN
links and DC links should have equal load on average. We
vary the load from 0.4 to 0.8 of the full network capacity.

Figure 11 and Figure 12 show the experimental results. In
general, FLASHPASS performs the best for flow completion
times (FCTs) of both small flows (<10MB) and large flows
(>10MB) compared to Cubic and ExpressPass. Specifically,
for the best version (i.e., enhanced by Aeolus), FlashPass*
reduces the overall FCT by 28.5%-32%, and 3.4%-11.4%
when comparing to Cubic and ExpressPass*, respectively.

For small flows, reactive congestion control like Cubic adds
time delay for slow start and its inherent high packet loss also

0

500

1000

1500
FC

T
 (m

s)
Cubic
ExpressPass
ExpressPass*
FlashPass
FlashPass*

(a) Small Flow - Average.

0

500

1000

1500

FC
T

 (m
s)

(b) Small Flow - 99th Tail.

0

1000

2000

3000

FC
T

 (m
s)

(c) Large Flow - Average.

0

1000

2000

3000

FC
T

 (m
s)

(d) All Flow - Average.

Fig. 11: Flow completion times (FCTs) of various transport protocols under realistic dynamic workload (average load = 0.4).
ExpressPass* indicates the Aeolus-enhanced ExpressPass version. FlashPass* indicates the Aeolus-enhanced FlashPass version.

0

500

1000

1500

FC
T

 (m
s)

Cubic
ExpressPass
ExpressPass*
FlashPass
FlashPass*

(a) Small Flow - Average.

0

500

1000

1500

2000
FC

T
 (m

s)

(b) Small Flow - 99th Tail.

0

2000

4000

6000

FC
T

 (m
s)

(c) Large Flow - Average.

0

2000

4000

6000

FC
T

 (m
s)

(d) All Flow - Average.

Fig. 12: Flow completion times (FCTs) of various transport protocols under realistic dynamic workload (average load = 0.8).
ExpressPass* indicates the Aeolus-enhanced ExpressPass version. FlashPass* indicates the Aeolus-enhanced FlashPass version.

40ms

20ms30ms
DC 1 DC 2

DC 3

Fig. 13: Wide-area network (WAN) topology.

introduces high retransmission timeout overhead, leading to
much larger completion times than those of proactive trans-
ports. While for ExpressPass, it probes for more bandwidth
with much more aggressive credit control algorithm while still
keeping low packet losses and thus low timeout. FLASHPASS
improves the emulation process and achieves zero losses,
thus reducing the small flow completion times to a great
extent. When enhanced by Aeolus with linerate start (i.e.,
ExpressPass* and FlashPass*), one more RTT is saved for
credit packets to start data sending, resulting in even lower
small flow FCT. This is especially important when the average
network load is low. For example, FlashPass* reduces the
small flow FCT by 5.1%-16.4% on average and 24.3%-38.0%
at 99-th tail when comparing to ExpressPass*.

For large flows, due to shallow buffer and high packet
losses, Cubic suffers from low throughput and thus achieves
relatively high FCTs for large flows. While there are also
some losses for ExpressPass data sending due to imperfect
scheduling in time, the negative impact is very limited because
it does not reset its sending rate when loss or timeout happens.
However, it does waste some bandwidth due to the last RTT
credit scheduling. Such a credit wastage introduces severe
negative impact when the network load is high (e.g., when
average load = 0.8). FLASHPASS handles the last RTT credit
scheduling issue with over-provisioning and selective dropping
mechanism. Thus, the credit wastage is effectively avoided,
leading to roughly 10.2% reduction on large flow completion
times when comparing FlashPass* with ExpressPass*.

C. Deep Dive

1) How do parameters of FLASHPASS affect its network
performance: In this part, we evaluate the FLASHPASS
performance under various parameter settings. First of all,
FLASHPASS sets the initial credit rate to the maximum of
the emulation network for new flows. This is enabled by the
low loss penalty of credit packets as well as the negligible
credit wastage with the help of selective dropping mechanism
of FLASHPASS. The linerate credit start helps to reduce
short flow completion times, especially when the network is
mostly idle. Secondly, the FLASHPASS emulation feedback
control loop uses two parameters, i.e., min target loss and
max target loss, to control the target credit loss rate. We
repeat the same experiments in §IV-B2 and Figure 14 shows
the results. In general, higher target loss rates lead to faster
convergence under traffic dynamics and thus higher efficiency
in utilizing network bandwidth, while lower ones have smaller
emulation packet overhead. Based on the results, we recom-
mend default parameter settings of min target loss = 1%
and max target loss = 10%.

2) How effective is the over-provisioning with selective
dropping mechanism of FLASHPASS in avoiding bandwidth
or credit wastage: In this part, we compare the performance
of FLASHPASS with and without the over-provisioning with
selective dropping mechanism. We again use the wide-area
network topology shown in Figure 13. We generate synthetic
workload [32]. Flow sizes are varied from 10MB to 80MB.
The average network load is set to 0.8 of the full network
capacity. Figure 15 shows the experimental results. We find
that the over-provisioning with selective dropping mechanism
of FLASHPASS helps to save credits in the last RTT by 3.4%-
27% of the total traffic volume. This leads to a reduced flow
completion time by up to 19% comparing to FLASHPASS with-
out the over-provisioning and selective dropping mechanism.

min:1%
max:5%

min:1%
max:10%

min:1%
max:20%

min:5%
max:10%

(min/max)_target_loss

0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 F
C

T

0

5

10

15

E
m

ul
at

io
n

lo
ss

 (%
)

Fig. 14: FCT and credit loss rate of FLASHPASS. The av-
erage FCT is normalized by the result of FLASHPASS with
min target loss = 1% and max target loss = 5%.

V. PRACTICAL DEPLOYMENT ANALYSIS

For practical deployment on the enterprise WAN, there are
some more requirements for FLASHPASS than the pure end-
to-end transport. Firstly, a separate emulation queue should
be reserved and rate limited on network switches for emula-
tion process. Secondly, to enable selective dropping (§III-C),
single-threshold ECN marking/dropping should be configured
on the emulation queue. These requirements can be achieved
with commodity switches, but need non-trivial configuration
across the whole network. Thirdly, we also notice that PCC
solutions cannot co-exist with the legacy TCP protocols. A
straightforward workaround is to separate different traffic with
multiple queues, but may bring about some overheads.

Lastly, an efficient implementation of proactive congestion
control logic is required. Recent work [38], [39] presents a
Linux kernel implementation (based on Homa) that achieves
magnitudes lower latency than TCP. Specifically, a variety
of issues such as batching, load balancing, and realtime
processing, have been well addressed in the work. There
are some other efforts on realizing PCC protocols on user-
space DPDK [23], or on congestion control plane (CCP) [40].
While these efforts have validated the feasibility of building
an efficient PCC network stack, prototyping a fully functional
FLASHPASS is our next step effort and is beyond the scope of
this paper. Our hope is that the design, analysis, and extensive
simulations conducted in this paper will pave the way for the
next step of prototyping and deployment.

VI. RELATED WORK

Reactive Congestion Control (RCC): The seminal work of
TCP congestion control [11] works in a reactive manner. It
detects congestion based on a delayed feedback signal (e.g.,
packet loss) from the network and reacts passively. Many
variants have emerged since then, e.g., Cubic [12], Com-
pound [41], etc. Vegas [13] is the first delay-based protocol
to avoid intrinsic high loss and queueing delay of loss-based
transport. After that, many protocols [14], [15] are proposed to
use delay signal (either explicitly or implicitly). More recently,
PCC-Allegro [42] proposes to react to congestion based on
the measured performance. It is followed by PCC-Vivace [43]
and PCC-Proteus [44] that extend the framework to be more
efficient and TCP-friendly (e.g., on Internet). However, these
protocols are essentially reactive, and may hardly meet our
need on shallow-buffered WAN (e.g., TCP variants in §II-B).

10 20 40 80
Flow Size (MB)

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 F
C

T

0

10

20

30

C
re

di
t S

av
ag

e
(%

)

Fig. 15: FCT and credit savage of FLASHPASS with over-
provisioning mechanism. The average FCT is normalized by
the result of FLASHPASS without over-provisioning.

There are other RCC protocols designed in particular for
DCN. DCTCP [35] detects the network congestion with ex-
plicit congestion notification (ECN) signal. Following that,
many ECN-based protocols [45]–[53] are proposed. More
recently, HPCC [54] leverages In-band Network Telemetry
(INT) to detect rate mismatch, and adjust sending rates accord-
ingly. These protocols require advanced congestion signals that
are not available or well supported [55] on WAN.

Proactive Congestion Control (PCC): PCC protocols pro-
pose to allocate bandwidth proactively. Centralized PCC [18]
regulates traffic rate with a centralized controller. Switch-
assisted PCC [19] leverages switch assistance in bandwidth
allocation. Both impose high requirements on network facili-
ties (e.g., cutting payload [24]) and hence are either unscalable
or impractical. Some receiver-driven protocols like Homa [21]
employ simple credit scheduling on the receiver side. They
assume single bottleneck link between the top-of-rack (ToR)
switch and receiver, which does not hold on WAN. Other
receiver-driven protocols like ExpressPass [20] that leverage
credit emulation on a separate queue for bandwidth allocation.
However, they suffer from efficiency problems on WAN.
In contrast, FLASHPASS addresses these problems to fully
unleash the power of PCC on shallow-buffered WAN.

VII. CONCLUSION

In this paper, we reveal the trend of adopting shallow-
buffered commodity switching chips on wide-area networks
(WAN). We then investigate its impact on network perfor-
mance, and find the insufficiency of the TCP-style reactive
congestion control (RCC). To address it, we turn to the
emerging proactive congestion control (PCC), and propose
FLASHPASS. FLASHPASS is the first attempt to employ PCC
on WAN. It is also the first sender-driven credit-scheduled
PCC protocol. It leverages the sender-driven emulation process
and over-provisioning with selective dropping mechanism to
work practically and effectively for the shallow-buffered WAN.
Extensive experiments are conducted and validate the superior
performance of FLASHPASS under realistic workload.

ACKNOWLEDGMENT

We thank our shepherd Fahad Dogar and the anonymous
reviewers for their constructive feedback and suggestions. This
work is supported in part by the Hong Kong RGC TRS T41-
603/20-R, GRF-16215119 and the Alibaba Research Grant.
Kai Chen is the corresponding author of the paper.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and
A. Vahdat. “B4: experience with a globally-deployed software defined
wan,” in SIGCOMM. ACM, 2013, pp. 3–14.

[2] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. “Achieving high utilization with software-driven WAN,”
in SIGCOMM. ACM, 2013, 15–26.

[3] C. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, K. Naidu B.,
C. Bhagat, S. Jain, J. Kaimal, S. Liang, K. Mendelev, S. Padgett,
F. Rabe, S. Ray, M. Tewari, M. Tierney, M. Zahn, J. Zolla, J. Ong,
and A. Vahdat, “B4 and after: managing hierarchy, partitioning, and
asymmetry for availability and scale in google’s software-defined WAN,”
in SIGCOMM. ACM, 2018, pp. 74–87.

[4] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila, M. Robin,
A. Siganporia, S. Stuart, and A. Vahdat. “BwE: Flexible, Hierarchical
Bandwidth Allocation for WAN Distributed Computing,” in SIGCOMM.
ACM, 2015, pp. 1–14.

[5] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang. “Guaranteeing Deadlines for Inter-Datacenter Transfers,” in
EuroSys. ACM, 2015.

[6] N. Farrington, E. Rubow and A. Vahdat. “Data Center Switch Archi-
tecture in the Age of Merchant Silicon,” in 17th IEEE Symposium on
High Performance Interconnects. IEEE, 2009, pp. 93-102.

[7] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, J. Provost,
J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat.
“Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network,” in SIGCOMM. ACM, 2015, pp.
183–197.

[8] S. Supittayapornpong, B. Raghavan, and R. Govindan. “Towards highly
available clos-based WAN routers,” in SIGCOMM. ACM, 2019, pp.
424–440.

[9] Packet buffers. https://people.ucsc.edu/ warner/buffer.html. Accessed on
March 2021.

[10] N. McKeown, G. Appenzeller, and I. Keslassy. “Sizing router buffers,”
in SIGCOMM. ACM, 2004, pp. 281–292.

[11] V. Jacobson. “Congestion avoidance and control,” in SIGCOMM. ACM,
1988, pp. 314–329.

[12] S. Ha, I. Rhee, and L. Xu. “CUBIC: a new TCP-friendly high-speed
TCP variant,” in SIGOPS. ACM, 2008, pp. 64–74.

[13] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. “Tcp vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM.
ACM, 1994.

[14] V. Arun and H. Balakrishnan. “Copa: Practical Delay-Based Congestion
Control for the Internet,” in NSDI. USENIX, 2018, pp. 329-342.

[15] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
“BBR: congestion-based congestion control,” in Communications of the
ACM. ACM, 2017, pp. 58–66.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. “TCP Selective
Acknowledgment Options,” in RFC 2018. IETF, 1996.

[17] Y. Cheng, N. Cardwell, N. Dukkipat, and P. Jha. “The RACK-TLP Loss
Detection Algorithm for TCP,” in RFC 8985. IETF, 2021.

[18] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. “Fast-
pass: a centralized ”zero-queue” datacenter network,” in SIGCOMM.
ACM, 2014, pp. 307–318.

[19] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G.
Antichi, and M. Wójcik. “Re-architecting datacenter networks and stacks
for low latency and high performance,” in SIGCOMM. ACM, 2017, pp.
29–42.

[20] I. Cho, Keon Jang, Dongsu Han. “Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters,” in SIGCOMM. ACM, 2017, pp.
239-252.

[21] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout. “Homa: a receiver-
driven low-latency transport protocol using network priorities,” in SIG-
COMM. ACM, 2018, pp. 221–235.

[22] S. Hu, W. Bai, B. Qiao, K. Chen, K. Tan. “Augmenting Proactive
Congestion Control with Aeolus,” in APNet, 2018.

[23] S. Hu, W. Bai, G. Zeng, Z. Wang, B. Qiao, K. Chen, K. Tan, and Y.
Wang. “Aeolus: A Building Block for Proactive Transport in Datacen-
ters,” in SIGCOMM. ACM, 2020, pp. 422–434.

[24] P. Cheng, F. Ren, R. Shu, and C. Lin. “Catch the whole lot in an action:
rapid precise packet loss notification in data centers,” in NSDI. USENIX,
2014, pp. 17–28.

[25] Data Centers - Google. https://www.google.com/about/datacenters. Ac-
cessed on March 2021.

[26] Datacenter Infrastructure - Microsoft. https://www.microsoft.com/en-
us/cloud-platform/global- datacenters. Accessed on March 2021.

[27] Data Center Engineering - Facebook Engineering.
https://engineering.fb.com/category/data-center-engineering. Accessed
on March 2021.

[28] Alibaba Cloud’s Global Infrastructure.
https://www.alibabacloud.com/global-locations. Accessed on March
2021.

[29] L. A. Barroso, J. Clidaras, U. Hoelzle. “The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines,” Morgan
& Claypool, 2013.

[30] L. Kleinrock. “Power and deterministic rules of thumb for probabilistic
problems in computer communications,” in Proceedings of the Interna-
tional Conference on Communications. 1979.

[31] kaist-ina/ns2-xpass. https://github.com/kaist-ina/ns2-xpass. Accessed on
March 2021.

[32] A. Saeed, V. Gupta, P. Goyal, M. Sharif, R. Pan, M. Ammar, E. Zegura,
K. Jang, M. Alizadeh, A. Kabbani, and A. Vahdat. “Annulus: A Dual
Congestion Control Loop for Datacenter and WAN Traffic Aggregates,”
In SIGCOMM. ACM, 2020, pp. 735–749.

[33] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang. “Tuning ECN
for data center networks,” in CoNEXT. ACM, 2012, pp. 25–36.

[34] G. Judd. “Attaining the promise and avoiding the pitfalls of TCP in the
datacenter,” in NSDI. USENIX, 2015, pp. 145–157.

[35] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. “Data center tcp (dctcp),”
in SIGCOMM, 2010.

[36] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. “VL2: a scalable and flexible
data center network,” in SIGCOMM. ACM, 2009, pp. 51–62.

[37] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. “Inside the
Social Network’s (Datacenter) Network,” in SIGCOMM. ACM, 2015,
pp. 123–137.

[38] J. Ousterhout. “A Linux Kernel Implementation of the Homa Transport
Protocol,” in ATC. USENIX, 2021.

[39] PlatformLab/HomaModule. https://github.com/PlatformLab/HomaModule.
Accessed on March 2021.

[40] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R.
Mittal, M. Alizadeh, and H. Balakrishnan. “Restructuring endpoint
congestion control,” In SIGCOMM. ACM, 2018, pp. 30–43.

[41] K. Tan, J. Song, Q. Zhang and M. Sridharan. “A Compound TCP
Approach for High-Speed and Long Distance Networks,” in INFOCOM.
IEEE, 2006, pp. 1-12.

[42] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey and M. Schapira. “PCC: Re-
architecting Congestion Control for Consistent High Performance,” in
NSDI, 2015.

[43] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey and M.
Schapira. “PCC Vivace: Online-Learning Congestion Control,” in NSDI,
2018.

[44] T. Meng, N. R. Schiff, P. B. Godfrey and M. Schapira. “PCC Proteus:
Scavenger Transport And Beyond,” in SIGCOMM, 2020.

[45] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M.
Yasuda. “Less is more: trading a little bandwidth for ultra-low latency
in the data center,” in NSDI, 2012.

[46] B. Vamanan, J. Hasan, and T. Vijaykumar. “Deadline-aware datacenter
tcp (d2tcp),” in SIGCOMM, 2012.

[47] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan. “Minimizing flow completion times in data centers,” in
INFOCOM, 2013.

[48] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang. “Congestion control for large-
scale rdma deployments,” in SIGCOMM, 2015.

[49] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang. “Information-
Agnostic Flow Scheduling for Commodity Data Centers,” in NSDI,
2015.

[50] W. Bai, K. Chen, L. Chen, C. Kim, and H Wu. “Enabling ECN in
Multi-Service Multi-Queue Data Centers,” in CoNEXT, 2016.

[51] W. Bai, K. Chen, L. Chen, C. Kim, and H Wu. “Enabling ECN over
Generic Packet Scheduling,” in CoNEXT, 2016.

[52] J. Zhang, W. Bai, and K. Chen. “Enabling ECN for datacenter networks
with RTT variations,” in CoNEXT, 2019.

[53] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, Y. Zhu, and L. Cui.
“Combining ECN and RTT for Datacenter Transport,” in APNet, 2017.

[54] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh, and M. Yu. “HPCC: high precision
congestion control,” in SIGCOMM. ACM, 2019, pp. 44–58.

[55] G. Zeng, W. Bai, G. Chen, K. Chen, D. Han, Y. Zhu, and L. Cui.
“Congestion Control for Cross-Datacenter Networks,” in ICNP. IEEE,
2019, pp. 1-12.

[56] V. Dukic, S. Abdu J., B. Karlas, M. Owaida, C. Zhang, and A. SinglaIs.
“Is advance knowledge of flow sizes a plausible assumption?” in NSDI,
2019, pp. 565-580.

